TCR-250 WINDOW WALL structural charts

Wind load curves for captured mullions were generated based on composite properties determined by AAMA TIR-A8, Structural Properties of Composite Thermal Barrier Framing Systems.

Data is based on deflection limitations in accordance with AAMA TIR-A11 of L/175 up to $133^{\prime}-6$ " and L/240 $+1 / 4$ " above $13^{\prime}-6{ }^{\prime \prime}$, with a maximum deflection of $11 / 4^{\prime \prime}$. All curves reflect single span conditions, unless noted otherwise.

These curves reflect the limiting value for mullions with horizontals and are based on allowable windload stress for T6 aluminum ($15,000 \mathrm{psi}$) and A36 steel ($20,000 \mathrm{psi}$).

A $4 / 3$ increase in allowable stress is not reflected in these curves. For special applications not covered by these curves, please consult your local Oldcastle BuildingEnvelope ${ }^{\oplus}$ facility for assistance.

TCR-454

$I=1.378$
$S=1.038$

$I=1.378$
$S=1.038$
RS-24 Steel
I = 0.582
$S=0.545$

Wind load curves for captured mullions were generated based on composite properties determined by AAMA TIR-A8, Structural Properties of Composite Thermal Barrier Framing Systems.

Data is based on deflection limitations in accordance with AAMA TIR-A11 of L/175 up to $133^{\prime}-6$ " and $\mathrm{L} / 240+1 / 4^{\prime \prime}$ above $13^{\prime}-6$ ", with a maximum deflection of $11 / 4^{\prime \prime}$. All curves reflect single span conditions, unless noted otherwise.

These curves reflect the limiting value for mullions with horizontals and are based on allowable windload stress for T6 aluminum ($15,000 \mathrm{psi}$) and A36 steel ($20,000 \mathrm{psi}$).

A $4 / 3$ increase in allowable stress is not reflected in these curves. For special applications not covered by these curves, please consult your local Oldcastle BuildingEnvelope ${ }^{\circledR}$ facility for assistance.

Data is based on maximum deflection of $1 / 8^{\prime \prime}$ at the center of an intermediate horizontal. All curves are calculated for 1 " thick insulating glass (6.5 PSF) supported on two setting blocks at $1 / 4$ or $1 / 8$ point loading locations.

These curves are based on allowable windload stress for T 6 aluminum (15,000 psi).
A $4 / 3$ increase in allowable stress is not reflected in these curves. For special applications not covered by these curves, please consult your local Oldcastle BuildingEnvelope ${ }^{\circledR}$ facility for assistance.

TCR-472

TCR-672

1/8 POINT 1/4 POINT

1/4 POINT

